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Abstract. This paper models knowledge creation and diffusion as processes in-
volving many agents located on a network. Knowledge diffusion takes place when
an agent broadcasts his knowledge to the agents to whom he is directly connected.
Knowledge creation arises when agents receive new knowledge which is combined
with their existing knowledge stocks. Thus both creation and diffusion are network-
dependent activities. This paper examines the relationship between network archi-
tecture and aggregate knowledge levels. We find that knowledge growth is fastest
in a “small world”. That is, when the underlying network structure is relatively
cliquish (dense at a local level) yet has short paths. This corresponds to a locally-
connected graph which includes a few long-distance connections or shortcuts.

1 Introduction

One reason to reject the representative agent model is the observation that
economic agents are not identical. This simple fact creates serious problems
for the underpinnings of the standard model.! Agents are heterogeneous in
many ways, but an important one stems from the fact that any agent in a
large population interacts directly with only a very small number of other
agents. Thus a potentially important source of agent heterogeneity stems from
the “neighbourhood” in which an agent operates. To represent this feature
of economic interactions, we can model the population of agents as being
located on a network. This gives a natural structure which captures the fact
that an agent’s direct connections are few relative to the total population,
and thereby distinguishes one agent from another.

In this paper we examine the relationship between the architecture of the
network of agents and its aggregate performance. The issue here is rooted in
the economics of innovation and growth. It is commonplace since the growth
accounting work of Solow in the 1950s that technological change is central
to economic growth. There are two aspects to technical change: knowledge
creation and knowledge diffusion. Early concepts of knowledge treated it as

1 On this, see Kirman (1992).
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a public good, non-rivalrous, and non-exclusive; while expensive to create,
it is very cheap to duplicate, and thus trivial to disseminate or diffuse. (See
for example Arrow 1962; Nelson 1959.) Recently, though, this view is con-
sidered incomplete. While it may nicely capture certain aspects of codified
knowledge, there is much knowledge that does not have these properties.
In particular, work on tacit knowledge (Cowan and Foray 1997; von Hippel
1998) and absorptive capacity (Cohen and Levintahl 1989), has emphasized
that knowledge diffusion is not a trivial activity. Indeed, empirical studies of
knowledge flows using patent data have shown that the ease of knowledge
flow is negatively related to the distance over which it travels, implying that
knowledge is not freely available to the entire population once it has been
created. (See the works of Jaffe and his collaborators, e.g. Jaffe et al. 1993.)

The model in this paper captures both of these notions. Knowledge, when
created, is not globally available. It is transmitted through face-to-face inter-
actions. Further, because agents are located on a network, the requirement of
face-to-face interaction creates a natural notion of distance — the number of
interactions needed to pass the knowledge from originator to final recipient.
The central issue in this paper is the relationship between network structure
or architecture and the ability of the system to create and diffuse knowledge
rapidly. We model knowledge creation and diffusion taking place within a
population of agents located on a network, and examine the growth of ag-
gregate knowledge levels. Diffusion of knowledge clearly increases aggregate
knowledge levels simply through agents acquiring some existing knowledge.
But recent work on innovation as the recombination of existing ideas suggests
another benefit from diffusion. As an agent receives knowledge or information
he is able to integrate it with his existing stock, and create new knowledge.
Knowledge diffuses by an agent broadcasting (or perhaps more accurately
narrow-casting) his knowledge to those he is directly connected with. Re-
broadcasting diffuses the knowledge throughout the economy. In this frame-
work one agent’s mistakes or discoveries will benefit those with whom he
interacts, and innovations take place as a result of this broadcasting as re-
cipients re-combine the new knowledge with their existing knowledge. But
knowledge diffused this way can only be beneficial to those agents who are
at least partly capable of understanding and integrating it. Thus there is a
threshold value for dissimilarity in agents’ knowledge levels below which no
transmission is possible — if ¢ and j are too dissimilar they cannot learn from
each other.

For this economy we measure aggregate performance as the mean knowl-
edge level over all agents. The parameter we use to characterize network
architecture is the degree of spatial regularity in the inter-agent connections
through which knowledge flows. At one extreme of the space of networks there
is a regular structure in which every agent is connected to his n nearest neigh-
bours, whereas at the other extreme we have an irregular network in which
each agent is connected to, on average, n agents located at random in the
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network. We are dealing with networks that are identically local in the sense
that their density is low and constant, but they have different structural
features which, we will see, influence collective properties in a non-trivial
way. Our interest is in the space of networks between these two extremes,
and we find that one region stands out: “small world” networks generate the
fastest knowledge growth. As defined formally by Watts and Strogatz (1998),
the small world combines a strong degree of local cohesiveness with a small
fraction of long distance links permitting knowledge to be circulated rapidly
among distant parts of the network.

2 The Model

In our economy many agents are located on a graph, each agent having direct
connections with a small number of other agents. Each agent has a knowledge
endowment represented by a real-valued vector. At random times an agent
broadcasts his knowledge.? Knowledge is broadcast to all those agents with
whom the sender has a direct connection. If the knowledge level of the po-
tential recipient is not too dissimilar from that of the broadcaster, knowledge
is received and assimilated. Formally, if ¢ broadcasts to j, then in any knowl-
edge category in which i exceeds 7, j’s knowledge increases. In some cases,
agents have imperfect absorptive capacity, and only assimilate part of what
they receive. In others, they are “super-absorptive”: they absorb everything
they are sent and are able to use it to create new knowledge, increasing their
knowledge levels further.

2.1 Knowledge interaction

Each agent is characterized by a knowledge vector v; which evolves over time
as the agent receives information broadcast by other agents. Formally, let Uf’ &
denote agent i’s knowledge endowment in category k € {1,..., K} at time ¢.
Agent ¢ broadcasts to every j € I' (i) (equivalently ¢ € I'(j) as the graph is
non-directed), if dissimilarity between ¢ and j is low enough. By dissimilarity,
we mean the relative distance between ¢ and j in terms of knowledge, which
we write as

A(i,j):max{r,%}—l, (1)

where r = |v;| / |vj| and |-| is the standard Euclidean norm of a vector. For
each agent j € I'(i), provided A(i,j) < 6 € (0,00), i makes his knowl-
edge available to 5.3 For every knowledge category, k, when i broadcasts, j’s

2 The nature of knowledge, and its relation to data and information is complex. we
avoid these complexities except to the extent that we recognize the importance
of and difficulty in transmitting tacit knowledge.

% As an illustration, if |v;| = 1 and # = 0.2 then agent j can learn from agent i
provided |v;| € [0.833,1.2].
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knowledge increases according to

Uﬁgl :vj-’k + o - max {0,v} , —vj-’k}, (2)
for all k£ without any consequent loss of knowledge to agent 7. The parameter
« captures an important aspect of knowledge diffusion and transfer. When
a < 1 knowledge is only partly assimilable. This notion has been examined
as an issue of absorptive capacity by Cohen and Levinthal (1989), or Cowan
and Foray (1997). Hence broadcasting results in partial acquisition of knowl-
edge by the recipient, as well as a partial diminution of the distance between
broadcaster and recipient. In a regime of “collective invention” (Allen 1983),
however, knowledge is characterized as super-additive, i.e. &« > 1. Here, un-
observed (by the analyst) complementarities in the knowledge stocks of ¢ and
j imply that when j receives i’s knowledge he is able to improve upon it,
innovating by combining his knowledge with the knowledge newly acquired.*

2.2 The interaction structure

Consider N agents existing on an undirected connected graph G (I,1"), where
I={1,...,N} is the set of vertices (agents) and I' = {I" (i), € I'} the list
of connections (the vertices to which each vertex is connected). Formally
I'(i)y={jeI\{i}|d(ij) =1}, where d(i,7) is the length of the shortest
path (geodesic) from vertex i to vertex j. Only agents separated by one edge
can interact, and when 7 broadcasts, only those agents in I" (i) are potential
recipients.

Our interest in network architecture differs from that seen in the ma-
jority of the literature in that we do not vary the density of the network.
The family of graphs we consider here contains a constant number n - N/2
of edges . Our concern is with the degree of regularity in the structure. The
following heuristic (or ‘re-wiring’ procedure) is employed: Create the regular
lattice structure. With probability p re-wire each edge of the graph. That is,
sequentially examine each edge of the graph; with probability p disconnect
one of its vertices, and connect it to a vertex chosen uniformly at random.
In the algorithm we ensure both that vertices are not self-connected by this
procedure, and that there are no duplications, i.e. no two vertices are con-
nected more than once.’ For large graphs, this procedure ensures that the

* Note that « could be intepretated as parameterizing the tacitness of knowledge.
If @« < 1 even in the absence of a dissimilarity constraint the failure to absorb
all available knowledge can arise because codified, broadcast knowledge needs to
be interpreted and this interpretation intimately involves tacit knowledge, which
the receiving firm is unlikely to have. When o > 1, the dissimilarity constraint
performs the same function. Agents with similar codified knowledge are likely
to have similar, if not the same, tacit knowledge. See Cowan et al. (2000) for a
discussion of codification and tacitness.

® This is the re-wiring procedure employed by Watts and Strogatz (1998), in their
seminal work on small worlds.
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connectivity is preserved and that the average number of edges per vertex is
constant at n. By this algorithm we tune the degree of randomness in the
graph with a single parameter p € [0, 1], hence the label G (I,n, p) for graphs
in this family.

The structural properties of G (I, n, p)-graphs can be captured by the con-
cepts of average path length and average cliquishness. To illustrate, in friend-
ship networks, the path length is the number of friendships in the shortest
chain connecting two agents, whereas cliquishness reflects the extent to which
friends of one agent are also friends of each other. Recall d (4, j) is the length
of the shortest path between ¢ and j. The average path length L (p) is

L) =13 3 1) <&

i€l j#i

and average cliquishness C (p) is given by

_i X(]vl)
Co) =5 D #I (i) (#I (i) — 1) /2 (4)

i€l jlel(i)

where X (j,1) = 1if j € I'(I) and X (j,1) = 0 otherwise. The evolution of
path length and clique size with p is depicted on Figure 1, for a graph of
N = 500 vertices, each vertex having on average n = 10 connections. (The
graph depicts average values over 50 replications.) For the sake of clarity, we
plot the normalized values L (p) /L (0) and C (p) /C (0).

The upper curve (thick black) in Figure 1 is the normalized average
cliquishness index C (p) /C (0) for p € [0, 1] . It remains almost constant when
p is reasonably small and falls slowly for large values of p. By contrast, av-
erage path length (thin black) as measured by L (p) /L (0) falls quickly for
very small p values and flattens out near 0.01. As emphasized by Watts and
Strogatz, there is a non-negligible interval for p over which L (p) ~ L (1) yet
C (p) > C (1) . This interval, in which high cliquishness and low path length
coexist, constitutes the small world region.

3 Numerical experiments

We are interested generally in the relationship between the structure of the
network across which knowledge diffuses and the distribution power of the
innovation system. It is natural therefore to examine the evolution of knowl-
edge levels in this economy. We can do this by simulating the economy and
relating long run knowledge levels to the value of p in our re-wiring algorithm.
Of particular interest is whether the model displays small world properties.
Define agent i’s average knowledge level at time ¢ as p! = % Yok Uf’ ¢~ The
average level of knowledge in the economy at time ¢ is

p= S (5)

icl
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Fig. 1. Average cliquishness and average path length as functions of the degree of
randomness in network structure, p

and the variance in knowledge allocation is
1
~ S0 - () (6)

We consider a third measure, having to do with the degree of spatial or-
der in a system of locally interconnected components. To check whether our
broadcast economy generates spatially auto-correlated knowledge allocations,
we compute the Moran coefficient defined as follows (McGrew and Monroe
1993). Dropping time indexes, the coefficient is written

§ = 2SS wi s — 1)1 — ), (7)

0" el i#i

where o

doier 2o 1/ (i)

This statistic is written in terms of the type of cross-products found in the
standard correlation, but instead of two variables, the pairs of adjoining ver-
tices are used. Values of the Moran coefficient S tend to be in [—1, +1], though
are not restricted to this range. Values near +1 indicate similar values tend to
cluster; values near —1 indicate dissimilar values tend to cluster; and values

Wi,j =
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near —1/(#I — 1) (going to 0 as #I gets large) indicate values tend to be
randomly scattered.

We consider an economy with N = 500 agents, each having, on average
n = 10 direct connections to other agents. Within a single simulation run
the network structure is fixed, so each possible economy is represented by
a graph from the family G (I,10,p) with T = {1,...,500}.¢® Each agent is
endowed with a 5-category knowledge vector, with each element randomly
initialized from a uniform distribution U [0,1]. In simulation time, in each
period one randomly selected agent broadcasts his knowledge. The knowledge
is received by all those who are directly connected to him and are sufficiently
similar. Formally, the broadcast of agent 7 is received by the set of agents
{j € I'i) | A(i,5) < 0.2}. We consider a large number 7 of periods, to
ensure that each agent takes part in a reasonably large number of knowledge
transmissions, both as sender and receiver. With 7 = 30,000, the average
agent broadcasts 60 times. We run 50 replications for each value of a and p.

We are interested in the effects of two parameters. The first is p, which
determines the network structure. This we vary from 0 to 1 in units convenient
to display on a log scale. The second is «, which determines the extent to
which knowledge can be assimilated. We vary « from 0.96 to 1.2 with an
increment of 0.01. Values of @ < 1 indicate a regime in which tacit knowledge
is important, and knowledge received is only absorbed with some effort. Thus
the effects of receiving a broadcast are a partial absorption by the recipient
and thus a diminution of the dissimilarity of sender and receiver. When a > 1
we are in a regime in which knowledge is super-additive. The recipient of
knowledge is able to leap-frog the sender. This corresponds to Allen’s (1983)
description of collective invention, in which knowledge is relatively simple to
absorb and easy to improve upon.

4 Results

The first set of results we examine has to do with the efficiency and equity
of knowledge creation and diffusion. We then turn to the spatial behaviour
of the system.

4.1 Efficiency and equity in knowledge diffusion

We examine the efficiency of the network structure in terms of long run
average knowledge levels. The statistic we use is the average knowledge level

® The issue of the endogeneity of the network structure is not addressed here. This
is typical in this literature. Notable exceptions, in which endogenous network
strutures are the focus of the analysis, are Bala and Goyal (1998); Jackson and
Wolinsky (1996); Plouraboue et al. (1998).
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in the economy p”. The parameter space can be partitioned into two distinct
regions corresponding to @ < 1 and a > 1. In the first, new knowledge is
not created, and changes in aggregate knowledge level arise purely through
diffusion. In the second there is both creation and diffusion. We consider
them separately.

Diffusion Consider first the case in which absorptive capacity is less than
perfect — agents are able to assimilate only part of the knowledge with which
they are presented. This corresponds to the region of the parameter space
where a < 1. Here, a purely diffusive mechanism is at work — knowledge is
diffused, but not generated. In this regime, network structure has no apparent
effect on long run knowledge levels. All values of p produce the same long
run state of the economy. The effect of changing average path length between
agents is to change the speed of convergence — shorter path lengths imply
faster convergence.

Contrasting results concerning this region of the parameter space are pre-
sented in Cowan and Jonard (1999), who show that a small-world architecture
dominates other forms of organization. This result is obtained in a model in
which knowledge is diffused not by broadcast but by barter trades among
agents. Broadcasting, as opposed to barter, eliminates the need for a double
coincidence of wants for knowledge diffusion. Eliminating this requirement
eliminates the advantage of cliquishness, which lies in the fact that in a
cliquish world a failure of the double coincidence of wants does not have
dramatic consequences for there are many other possible (short) paths along
which a piece of knowledge can travel.

Creation and Diffusion In the second region of the parameter space, where
a > 1, we get a joint process of knowledge creation and diffusion. Each agent
incorporates the knowledge he receives into his existing stock and becomes
more knowledgeable, hence achieving higher efficiency than before transmis-
sion.

Figure 2 depicts the relationship between the overall knowledge level and
the re-wiring probability p and absorptive/innovative capacity a. We plot
normalized rather than absolute values, to preserve legibility.” For a lower
than 1.05, no clear distinction exists between ordered and random graphs.
With finer graining, we see evidence of a smooth change starting at o = 1.
By contrast, when « exceeds approximately 1.05, clear patterns emerge even
with coarse graining of the parameter space, and a sharp efficiency peak
obtains in the small world. At the same time, the knowledge-maximizing
p-value (degree of randomness) increases monotonically with «, though it
remains confined to the small-world region, i.e. the area between p = 0.01

" What we plot is actually u” divided, for each a-value, by the maximal value it
takes for p € [0,1], i.e. u” (o, p) / max, p” (a,p').
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Fig. 2. Knowledge levels in the (p, a)-space

and p = 0.1. The maximizing p-value always lies in this region, but it is worth
mentioning that most of the mass of the distribution itself is also located in
this region. Outside the small-world region, for every value of «, long run
average knowledge levels are much lower than the maximum. Hence a small-
world architecture, i.e., one in which there is at the same time a significant
amount of local order and a few random connections, achieves the best overall
performance in our broadcast economy.

A remark is in order here. In our experiments we ignored values of «
greater than 1+ 0. Recall that an agent who receives information not only
incorporates all of it but improves upon it (by « —1). This implies that after
receiving a transmission, the knowledge level of the recipient is higher than
that of the sender. If & > 146 the new knowledge level of the recipient would
increase so much that the sender now fails to pass the dissimilarity threshold
vis-a-vis the former recipient. That is, if I send you knowledge, you improve
so much that I cannot receive from you. This seems unreasonable, so we have
excluded this possibility by restricting « to be less than 1 4 6.

The interplay of path length and cliquishness In order to explain
the mechanism underlying this result, we focus on the effects of cliquishness
and path length on system performance. As an initial step in that expla-
nation, consider the role of dissimilarity. In the knowledge re-combination
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world analyzed here, the innovative jump a recipient makes increases with
his lag vis-a-vis the sender as long as their distance in terms of knowledge
endowments stays below 6. In the long run, this means that if we focus on two
agents repeatedly broadcasting to each other, their knowledge level converges
to a value that is an increasing function of both the initial level of the more
knowledgeable agent and the initial gap between the two agents. Of course
the larger « is, the higher the limit they jointly achieve also is. So large gaps
in this model lead to high long-run levels, unless initial gaps are so large that
they preclude transmission.

As mentioned earlier, there are two dimensions when knowledge growth
is considered, namely creation and diffusion. Though in the model knowledge
creation and knowledge diffusion are distilled into a single episode, it is intu-
itive that cliquishness mainly influences knowledge creation and path length
drives knowledge diffusion. We shall now examine the importance of these
two forces in knowledge growth. Figure 3 summarizes three typical outcomes
of the process of knowledge broadcast which we comment in turn.

The regular world is one in which an agent’s potential recipients are recip-
ients of each other. So when a piece of knowledge is released, a self-reinforcing
local mechanism is at work, and produces fast localized knowledge growth
within a set of neighbouring agents. This is the knowledge generation part
of the dynamics, which mainly takes place at the intra-clique level. It entails
unequal knowledge growth across clusters of agents. Strong inequalities arise
between groups that advance quickly and groups which lag behind. The first
(upper) graph in Figure 3 represents long-run knowledge states in the regular
world.

At the other extreme we have the random world in which in only a few
transmissions knowledge is passed through the whole population due to short
travel distances. In this situation there is a strong tendency for knowledge
levels to homogenize, and we have seen that this is bad for knowledge cre-
ation because homogeneity is bad for recombination. Knowledge diffusion is
efficient (hence the homogenization) but disruptive in that it squeezes the
dispersion of people in terms of knowledge, thereby leaving little chance for
knowledge creation. The random world is the lowest part of Figure 3, and
homogeneity is patent.

Between these extremes there is a trade off between knowledge creation
and knowledge diffusion, and the small world turns out to be the knowledge-
growth maximizing architecture. It shares most of the advantages of the
two extremes. It connects distant and possibly heterogenous parts of the
graph, creating the possibility for large innovative jumps. Shortcuts bring
together parts of the graph in which, at the same time, local reinforcement,
is at work. There is a tendency to homogenize overall knowledge levels but
without weakening too much local cumulativeness, thus we end up with lev-
els that are larger than in a random graph, but relatively homogeneous even
at the global level. Homogenization is stronger as soon as shortcuts are in-
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troduced, though as long as there are not too many the local reinforcement
stemming from large degrees of cliquishness is preserved. This is shown in
the middle part of Figure 3. Corresponding average values are represented in
Figure 3 by horizontal lines, and we have u™ (1.1,0) = 26, x” (1.1,0.01) = 36
and p” (1.1,1) = 11.

A second comment is that there is an apparent trend in the optimal
number of shortcuts. This arises in the marginal contribution of a random
connection as « is varied. When a shortcut is added, there is at the same
time a loss from decreasing cliquishness — harming local accumulation —
and benefits from decreasing path length — making feasible the possibility
of connecting highly knowledgeable parts of the graph. As « increases these
two effects grow in importance, but what matters is actually their relative
importance. If the marginal gain from decreasing path length increases faster
than the marginal cost of decreasing cliquishness, then (if the solution is
interior) the optimal number of shortcuts (value of p) will increase with a.
This cannot be checked directly since the two effects are not separable within
the context of the model. We can perform an indirect check in the following
way, however.

1leb

10000

100
= 0.001 ///\/7/

P

Average knowledge level

1.00 1.05 1.10 1.15 1.20

Innovative capacity

Fig. 4. The population average long-run knowledge level in two polar cases (p =
0.001 and p = 1), as a function of «
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In a regular world, path lengths are long, cliquishness is at its maximum.
Thus the main driver of growth in knowledge levels will be the local rein-
forcement that arises from cliquishness. By contrast, in the random word
cliquishness is minimized, as is path length, so growth in average knowledge
levels will be driven by the fact that diffusion is rapid. Plotting long run
knowledge levels in these two extreme worlds against different levels of «
will give an indication of how the two effects (increasing cliquishness and

decreasing path length) change in magnitude with «. This we do in Figure
79

From this Figure, it is clear that the benefits of cliquishness increase slowly
but steadily with «, as evidenced by the thin black curve; the benefits of short
paths rises rapidly when « becomes relatively large (thick black curve grow-
ing at a more than exponential rate). This suggests that effects of decreasing
path length does indeed increase faster than the costs of decreasing cliquish-
ness. Figure 7?7 shows that at some point, i.e., for large enough a-values, the
benefits from shorter paths exceed the losses from reduced cliquishness.

We turn now to the issue of equity in the distribution of knowledge across
agents. Figure 5 shows the relationship between the economy-wide knowl-
edge variance as a function of the re-wiring probability p and the absorp-
tive/innovative capacity «. Again we present normalized values.
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Fig. 5. Long run heterogeneity in knowledge allocation in the (p, «)-space
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Surprisingly, Figure 2 and Figure 5 are very similar (though dispersion is
lower in Figure 5), with highest inter-agent differences observed for a degree
of randomness monotonically increasing with a while remaining confined to
the area between p = 0.01 and p = 0.1.8 We therefore come to the some-
what uncomfortable conclusion that the small world region at the same time
generates the best overall performance in terms of how much knowledge is
produced by the system, and the worst overall performance when homogene-
ity of allocation is considered desirable. Figure 3 indicates that the source of
this variance is that some agents get left behind. Roughly the same number of
agents get left behind in each world, and stay close to their initial knowledge
levels, but in the small world, the agents who do advance advance rapidly
and far, thus creating a large gap between themselves and those left behind.

4.2 The spatial allocation of knowledge

Spatial correlation of knowledge levels can be considered either in geograph-
ical space or in the space of the network itself. In general, a positive spatial
correlation exists if agents ‘near each other’ have comparable knowledge vec-
tors. By contrast, negative correlations obtain when knowledgeable agents
are the neighbours of laggards and no clustering of knowledge exists. Corre-
lation in the geographic space means taking as the distance between nodes
i and j the simple absolute difference |i — j| (with the adequate modulo).
In that sense, node i is very close to nodes ¢ & 1, slightly less close to nodes
i£2 and so on. A priori, since knowledge generation and diffusion takes place
over the network, there is no reason in general to expect spatial correlation
in geographic space. For small values of p however, geographic space has a
very similar topology to network space (the spaces differ in roughly p percent
of the edges). Thus, if there are non-trivial correlations for small p values in
the network space, there should be echoes of them in geographic space.
Figure 6 shows the geographical spatial correlation as a function of p and
a. As expected, there is virtually no spatial correlation in this space. All the
values are small (in absolute value) and in general not statistically signifi-
cantly different from zero. There is one region that stands out in contrast.
For large a and small p, many of the correlations, while small, do differ sig-
nificantly from zero.” On the time scale we consider, though, this relationship
between p, a and spatial correlation contains considerable randomness.

Figure 7 gives the Moran coefficient S as a function of the degree of
randomness p and the absorptive/innovative capacity «, when the network
metric is considered. A very different picture obtains in the network space,
with three distinct regions. There is a wide band that goes from the lower

& The coefficient of variation of knowledge levels follows the same pattern, indicat-
ing that the pattern in the variance is not driven simply by re-scaling.
9 This was checked using a standard two-tailed ¢-test.
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Fig. 6. Spatial correlation in the geographical space

left corner of the (p,a)-space (low absorptive capacity in a regular world)
to the upper right corner (significant super-additivity in a random world)
where knowledge is more or less randomly allocated among agents. There is
aregion in which the world is random and absorptive capacities are imperfect,
in which a (small) negative correlation is observed. Finally, positive spatial
correlation obtains when the network of agents’ relationships is cliquish and
innovation rates are high, as we would expect.

The correlation in network space for small p values was indeed echoed in
geographic space. The echo is very weak however. Even a small discrepancy
between the space in which knowledge moves and the space in which corre-
lations are measured creates a very different impression on the existence and
strength of clustering.

It is clear from the results presented in Figures 6 and 7 and the discussion,
that there is no small world effect on spatial correlation or knowledge cluster-
ing. Cliquishness is a manifest source of knowledge clustering and introducing
shortcuts to possibly distant parts of the graph only tends to impede clus-
tering.

5 Conclusion

The use and creation of knowledge is central to economic growth and de-
velopment. The fact that knowledge diffusion takes time forces analysts to
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acknowledge that agents are heterogeneous in economically important ways.
Modelling this heterogeneity, and understanding its consequences for eco-
nomic performance is thus a central task in the attempt to understand any
dynamic economy. The model in this paper has explicitly included in the
diffusion process the idea that knowledge is not merely information, and thus
is diffused through specific contacts between individual agents. Repeated in-
teractions are valuable in facilitating diffusion, and a group of agents can, by
collectively sharing knowledge advance together. Groups of agents sharing
knowledge more or less freely is something observed historically, and Allen
(1983) has coined the phrase “collective invention” to describe it. Common to
these episodes is that this organization of innovation generates rapid technical
advance. One of the important features of collective invention is the sharing
of information among a broad, though typically localized, group of agents.
It is this feature that we have emphasized here, showing how the results
of this sharing is affected by the network structure over which communica-
tion takes place. Unless technical opportunities are extremely large, and thus
innovation is very straightforward, small-world network structures produce
fastest knowledge growth rates. Cliquishness is in general a good thing, but
the ability to bring knowledge into the clique from outside has a vital role. As
technological opportunities grow, though, there can be too much cliquishness
— because innovation involves capital investments that depreciate over time,
it can happen that with a rapid innovation rate and strong super-additivity
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in knowledge, an agent can be left behind by members of his clique, as they
use knowledge he has generated but which has created for him a temporary
lock-in due to his capital investments. In this sort of situation a very wide
variety in knowledge sources is important for an agent to keep in the race.
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